The ACGIH UV Guidelines: Development, Application and Issues

Maurice Bitran Ph.D.
Chair, Physical Agents Threshold Limit Values Committee, ACGIH
Assistant Professor, Dept. of Public Health Sciences, University of Toronto
Director, Innovation and Risk Management Branch Ontario Ministry of Agriculture and Food
Outline

• The ACGIH
• The ACGIH UV Guidelines (TLV’s)
• Action spectra
• Relative Spectral Effectiveness
• Effective Irradiance
• Application of UV TLVs
The ACGIH

• The American Conference of Governmental Industrial Hygienists (ACGIH) is a private, not-for-profit, non-governmental corporation …dedicated to promote health and safety within the workplace.

• Publishes Threshold Limit Values (TLVs) for chemical, physical and biological agents.

• WWW.acgih.org
ACGIH UV Guidelines

• First exposure guideline for UV (1972)
• Based on UV effects on the eye (photokeratitis and cataracts) and the skin (erythema).
• Not based on skin cancer but close to levels at which DNA repair level is observed (using p53 gene)
• Adopted by NIOSH and ICNIRP
Action Spectra and Spectral Effectiveness

• UV of different wavelengths have different effects in the eye and the skin
• The “action spectrum” for each effect charts the biological response as a function of wavelength
• The reciprocal normalized envelope of relevant action spectra provides the Relative Spectral Effectiveness $S(\lambda)$
RELATIVE SPECTRAL EFFECTIVENESS: \(S (\)\)

Biological effectiveness of different wavelengths normalized to unity at 270 nm

*Threshold Limit Value at 270 nm = 3.0 mJ/cm²
Effective Irradiance $E_{	ext{eff}}$

- $E_{	ext{eff}} \ [\text{W m}^{-2}] = S \ E_? \ S(?) \ ??$
 - $E_?$ = Spectral Irradiance $[\text{W/(cm}^2 \text{ nm)}]$
 - $S(?)$ = Relative Spectral Effectiveness
 - $??$ = band width in nm
 - Summed between 100 and 400 nm
ACGIH UV Threshold Limit Value (TLV)

- UV (180 to 400 nm) exposure of the unprotected eye and skin should not exceed:
 - $T_{\text{max}} = 0.003 \frac{[\text{J/cm}^2]}{[\text{W/cm}^2]}$
 - $T_{\text{max}} = \text{maximum exposure time in secs}$
 - $E_{\text{eff}} = \text{Effective Irradiance}$
Minimal Erythemal Dose

- Biologically Effective Radiant Exposure or Dose $[\text{J m}^{-2}]_{\text{eff}}$
- Dose = $E_{\text{eff}} \times$ exposure time [Joule/m2]
- Minimal Erythemal Dose
 - Minimal dose that will produce an erythema in previously unexposed skin 24 hours post-exposure
 - Varies with skin type, observations, etc.
- MED conventionally defined as 200 Joule/m2
- TLV = 1/3 MED
Using the UV TLV

- TLV intended to protect nearly all healthy workers
- Does not apply when exposed to hypersensitizing agents
- Easily exceeded in sunny spring or summer day
- Easily exceeded by use of sunbeds
SUNLIGHT vs SUNBED COMPARISON

Sunlight = 0.0667/Sunbed = 0.2 MED/min
The application of UV guidelines

- Ontario Ministry of Labour adopted ACGIH guidelines for workers exposed to solar and artificial UV radiation.
- People pursuing tanning routinely expose themselves to doses significantly higher than guidelines designed to protect workers.
- Issue is voluntary exposure vs. occupational exposure.
Common sense: the best protection